Tiny PILOT:

An Educational Language for the 6502

PILOT is a higher level language used for computer aided
instruction. This version includes an editor #ind an inter-
preter. It requires fewer than 800 bytes of mimory.

Nicholas Vrtis
5863 Pinetree S.E.
Kentwood, MI 49508

FEA AR R R RN AR AR R RN AR R BRF AR R A AR R AR R RE AR B AR A AR AR RRRR RN B R

CHAR * EDIT FUNCTION

SERRRRARARRARRRRRRERR R A FARARARARNS RBERRERRRRRARRRR B IR RRRBRRRE R RBRRE

* START EXECUTION OF THE PILOT PROGRAM
UPARROW®* MCVE EDIT POINTER TO START OF PROGRAM

*

/

B/S
C/R

* DISPLAY NEXT LINE OF THE PROGRAM
b4 * PAD TO END OF LINE WITH DELETE CHARACTERS
* BACKSPACE TO CORRECT TYPING ERROR
* CARRIAGE RETURN - INDICATE END OF STATEMENT

ANY * CHARACTER IS STORED IN PROGRAM (MAX 127 PER LINE)
AR R E R AR RN R RN RN FARRER AR AR AR AN B RR AR AR AR IR RR R ERAR Y

FORMAT * STATEMENT

WHAT IT DCES

FRASS SRR AN AR AR AR RERARSRARARRIR AR R IR IR AR ARARARRRRRARRRRRR (R RAES

W oM ok W o M M M W ik kM W & W W W W & & kW

T:TEXT # TYPE
)

A: * ACCEPT
*
2: * ACCEPT NAME
*
M:TEXT * MATCH
»
*
J:N % JUMP
*
*
U:N # USE SUBROUTINE N
*
E: * EXIT FROM SUBROUTINE
*
s: * STOP
*
c: * COMPUTE
L]
*
L]
*
*
R: * REMARKS
*
* CONDITIONALS
N »
Y »
*
N * LABEL
*
*
$X * VARIABLE ITEM
*
*

Mo W o M o o o N & M M N W ok o o o N & W N M o W % M R M

*

DISPLAY THE TEXT ON THE TERMINAL

INPUT UP TO 40 CHARACTERS INTO
ANSWER FIELD

INPUT UP TO 40 CHARACTERS INTO
NAME AND ANSWER FIELD.

COMPARE TEXT TO LAST IMPUT YROM
TERMINAL AND SET MATCi FLAC |TO
I IF EQUAL, N IF NOT EQUAL.
JUMP TO LABEL N FOR NEXT LI?
J:A MEANS JUMP TO LAST ACCE!
J=* MEANS RESTART FROM BEGINNING.
SAVE ADDRESS OF START OF NEIT
LINE AND THEN PERFORM AS IN [JUMP.
RETURN TO ADDRESS SAVED BY IRIOR
USE STATEMENT.
STOP PROGRAM AND RETURN TO {DITOR

3 m

PERFORMS ARITHMETIC ON VARI4BLES
NAMED A THROUGH Z. ALLOWED
OPERATIONS ARE =, +, AND -
RANGE IS + OR - 999

C:$= WILL PLACE RESULT IN AIISWER
FIELD INSTEAD OF A VARIABLE
PROGRAM REMARKS - NOT EXECL|ED

MAY PRECEED ANY STATEMENT.
EXECUTE ONLY IF MATCH FLAG [S N
EXECUTE ONLY IF MATCH FLAG [3 Y

MAY PRECEED ANY STATEMENT (R
CONDITIONAL. ACTS AS DESTINATION
FOR A JUMP OR USE STATEMENT
AS PART OF TEXT CAUSES CONTENTS
OF VARIABLES TO BE DISPLAYE] OR
MATCHED.

$? INDICATES NAME FIELDS.

AEFRBRRRRRRRRRRRFIRFRBRBR AR ERRRAET FRBRRARBRBVERRRRRR AR RRRRRERR(RBRRS

September, 1979

MICRO — The 8502 Jcymal

Are you envious of the guys on your
block who have big BASIC systems?
Have you ever tried to teach machine
language to someone who thinks HEX is
an evil spell? | had the same problem
until | discovered PILOT, and im-
plemented a small version on my SYM-1.
For those who haven't heard of PILOT
yet, it is an educational, high level
language intended for computer aided
instruction. it is a very simple language,
with only ten basic instructions, but it in-
corporates a number of features that
make it easy enough to use as a method
for introducing people to computers. |
have written some math drill programs
for my six- and eight-year olds, and in
turn, my eight-year old loves to write pro-
grams for her little brother to run.

This implementation of PILOT is not a
full “standard” version. After ail, what
do you expect from an interpeter and
editor that run in less than 800 bytes? |
also could not resist the temptation to
change things a little here and there. It
is close enough to give a flavor for what
PILOT can do, and it makes a nice
language to have fun with, even on a 2K
system.

The editor performs only the most
elementary functions required to get a
program in and running. It accepts
characters without checking syntax
rules, the only limitation being that each
line is a maximum of 127 characters
tong. | compromised at 127, instead of
80, because the sign of the index
register changes at 128, and so | avoid-
ed a compare.

The program looks for the ASCII
back-space character, hex 08, because
my CRT actually backspaces. If your ter-
minal doesn’t, you might want to
change this to a printable character
such as the underscore used by many
timesharing systems. A check is also
made for the backspace in the code for
the ACCEPT statement, so be sure to
change it there as well.

16:41

The editor doesn’t have a provision
fer inserting a line between existing
lines, but it is possible to change a line,
provided you replace it with one of the
same length or shorter. The percent key
fills from the current position to the next
end of line with delete characters, hex
FF. Since most terminals ignore these, it
works effectively as a delete to the end
of the line. The program has to check for
these during MATCH and COMPUTE
statement processing, since they repre-
sent the logical end of line.

The carriage return, entered as the
end of line, is converted to a zero by the
editor. This simplifies looking for the
end of each line, later on, since the zero
flag is set as the byte gets loaded. The
SYM monitor routine CRLF outputs both
the carriage return and the line feed, so
one doesn’'t save anything by keeping
the return in the line to output it.

The locations CURAD and CURAD + 1
address the start of each PILOT line. in-
itially, this is set to $500 by the routine
SETBGN. The Y register is incremented
0 access the next character in the line.
At the end of each line, subroutine SCU-
RAD bumps Y one more time to get past
the end of line character, and then adds
the resuiting Y value to the current ad-
dress and resets Y to zero.

This sets things up for the start of the
next line. Performing the line scan in this
way saves two bytes each time | need to
get to the next character because an
INY is used instead of a JSR, and it aiso
makes it easy to check for a line too

EPROM PROGRAMMER
Model EP-2A-79

SOFTWARE AVAILABLE FOR F-8, 8080, 6800,
8085, Z-80, 6502, KIM-1, 1802, 2650.

EPROM type is selected by a personality module
which plugs into the front of the programmer.
Power requirements are 115 VAC, 50/60 HZ at 15
watts. It is supplied with a 36 inch ribbon cable
for,connecting to microcomputer. Requires 112
1/0 ports. Priced at $155 with one set of
software. Personality modules are shown below.

Part No. Programs Price
PM-0 T™MS 2708 $15.00
PM-1 2704, 2708 15.00
PM-2 2732 30.00
PM-3 TMS 2716 15.00
PM-4 TMS 2532 30.00
PM-5 TMS 2516, 2716, 2758 15.00

Optimal Technology, Inc.
Blue Wood 127, Earlysville, VA 22936
Phone (804) 973-5482

0200 A

priord
J204

6207
0209

g20C
020F
€210

0212
0214

0216
0218

0214
021¢C

021E
Q2'F
0221
0222

0224
0226

0228
022B

caz2p
0zer

0231
0233
023%
0237
6239
0234
023cC
023D

20
BO

c9
Lo

B1

A9
91
c8
10

A9

87
83

3E
47

Fa

SE
EA

40
38

08
08

2F
05

21
DA

25
0E

97
18
FF
97

FS

oD

04

8A

84

04

* PAGE ZERt DATA REFERENCES

L3T s $0000 ADDRESS OF LA3T ACCEPT CGMMAND

FLG * $0002 CURRENT YES/NO FLAG

CHRS *# 30003 ALLOW 40 BYTES OF INPUT

NAME * $002B VARIABLE AREAS - 2 BYTES EACH
VARIBS # $0053 VARIABLE AREAS - 2 BYTES EACH
IFLAG * $0087 SPECIAL INDICATOR FLAG AREA

HOLDY # $0088 HOLD AREA FOR Y VALUE

WORK * $0089 TEMP WORK VARIABLE

RESULT *# $008B RESULT HOLD AREA FOR COMPUTATIONS
ANSX ¢# 3008D HOLD AREA FOR ANSWER INDEX POINTER
SIGNIF *® 3008E SIGNIFICANCE INDICATOR

OPRATN * $008F LAST OPERATION IN COMPUTE STATEMENT
NUMDSP * $0090 DISPLAY VARIABLE BUILD AREA

RETURN # $0095 JUMP RETURN ADDRESS

CURAD * $0097 ADDRESS OF START OF CURRENT LINE
CR s $0D CARRIAGE RETURN CODE

#*

* EXTERNAL ADDRESS REFERENCES
]

CRLF * $834D OUTPUT A CR AND LF

INCHR # $8A1B INPUT ONE CHARACTER

OUTCHR * $8A4T OUTPUT ONE CHARACTER
CRG $0200

*

START OF THE EDITOR PORTION

L]

START LDAIM $80 SET MODE TO EDIT FOR "PRT" ROUTINE
STA IFLAG
JSR SETBGN SET UP STARTING DATA AREA ADDRESS

* HERE IS THE START CF EACH NEW LINE

ELINE LDAIM $3E OUTPUT A ">™ PROMPT CHARACTER
JSR OUTCHR

* HERE IS YHERE EACH INPUT CHARACTER IS OBTAINED
*
EGET JSR INCHR
TAX CHECK FOR NULLS AND IGNORE
BEQ EGET 30 THEY DON'T GET CONFUSED WITH SOL

CMP1M $5E IS IT AN UPARROW?
BEQ START YES - START AT BEGINNING AGAIN

CMPTM $40 IS IT "AT" SYMBOL FOR EXECUTE REQUEST?
BEQ EXEC YES - GO START ON THAT

CMPTM $08 IS IT A BACKSPACE?
BNE TRYDSP NO - GO CHECK 7OR DISPLAY REQUEST

DEY YES - BACK UP ONE CHARACTER
BPL EGET BUT CHECK FOR PAST START OF LINE
INY HE BACKED UP TOO FAR - DISALLOW

BPL EGET UNCONDITTONAL

TRYDSP CMPIM $2F IS IT "/" FOR DISPLAY LINE REQUEST?
BNE TRYREP NO - CHECK FOR REPLACEMENT REQUEST
»

#+ DISPLAY "0 THE NEXT CARRIAGE RETURN
]

JSR PRT PRINT THE LINE
BCS ELINE UNCONDITIONAL

TRYREP CMPIM $25 IS IT "$" REQUEST TO PAD A LINE?
BNE CHAR NO - MUST BE DATA CHARACTER
»

* PAD THE [INE FROM CURRENT LOC TO EQOL WITH DELETE CHAR
*
PADLOP LDAIY CURAD GET CURRENT CHARACTER
BEQ SETNL [IF ZERQO, WE ARE DONE
LDAIM $FF ELSE MAKE IT A DELETE CHAR
STAIY CURAD
INY BUMP TO NEXT CHARACTER
BPL PADLOP LOOP IF HAVEN'T DONE 128
DEY LINE IS TOO LONG- - BACK UP ONE
LDAIM CR FORCE IN AN EOL HERE
*

* IT WASN'" AN EDIT CHARACTER - MUST BE DATA TO SAVE
»

023F
o024
0243
Qaus
3247
3249
Q244
g2u¢

g2up
0250

0252

0255
0253
0254
025¢C
0252
G260
3261

0263
2265
0267
0269
0264
026B

026D
026F
0271
0273

0275
0277

0279
027¢C

027E
0280
0281

0282
0284
0286
0287
0289

0288
028D
028F
0291
0293
0295

0297
0299

029C
029E
0241
0243
02A5
02A6
0248
02A4
02AC
02AE
02890

September, 1979

c9
50
A9
91
FO
c8

88

20
80

20
A2
AS
85
95
CA

4

B1
Cs
Do
c8
c8
DO

c9

c9
Do

cs
FO

20

85

c8

c9
bo
38
66
DO

c9
DO
AS
a5
AS
85

A9
20

A2
20
c9
DO
E8
DO
c9
DO
A9
95
24

57
BS

4D

33
33
00
96
53

37
2A
o4

F6

59
04
ug
09

02
F1

54
ES

3F
05

87
oc

41
34
97
00
98
01

o4

o4

8A

8a

CHdAR CMPIM
BNE
LDAIM

CHAR1 3TAIY
BEQ
INY
BPL
DEY

SETNL JSR
BCS
0

CR IS IT CARRIAGE RETURN AS EGCL?
CHAR1 SKIP AHEAD IF NOT
$00 ELSE CONVERT CR TO ZERO AS EOL
CURAD PUT IT AWAY
SETNL BRANCH IF YES
ELSE BUMP TO SET UP FOR NEXT ONE
EGET AND GO GET IT IF STILL ROOM ON LINE
ELSE POINT BACK TO LAST CHAR & FALL THRU

LINEND DO CR/LF AND FIX UP CURAD
ELINE GO START A NEW LINE

* EXECUTION PORTION BEGINS HERE
*

EXEC JSR

RESTRT JSR
LDXIM
LDAIM
STA

RESTR1 STAX
DEX
BPL

LSTART LDAIY
CMPIM
BNE
INY

SKPNXT INY

BNE
*

CRLF EXTRA BLANK LINE AFTER EDITOR

SETBGN HERE IF FROM J:®
$33 ZERO VARTABLE ZREAS
$00

RETURN +01

VARIBS

RESTR1

CURAD GET CHARACTER FROM THE LINE
324 CHECK FOR m#n LABEL MARKER
CHKCON IF NOT - GO CHECK FOR CONDITIONAL
OTHERWISE SKIP PAST THE n#n
SKIP PAST THE NEXT CHARACTER
LSTART UNCONDITIONAL

* FLAG DEPENDENT PROCESSING HERE
]

CHKCON CMPIM
BEQ
CMPIM

BNE
)

$59 CHECK FOR "Y" REQUEST

TFLAG BRANCH IF YES

$4E IF NOT - CHECK FOR "N® REQUEST
STRTST BRANCH IF NEITHER

* SEE IF CONDITIONAL MATCHES FLAG
)

TFLAG CMP
BEQ

*

* NO MATCH -

)

FWD JSR
BCS

STRTST STA
INY
INY

)
* ENTER NAME
]

XQUEST CMPIM
BNE
SEC
ROR

BNE
)

FLG SEE IF THEY MATCH
SKPNXT SKIP TQ NEXT CHAR & EXECUTE LINE

SKIP THIS STATEMENT

FWD1 USE THIS SUBROUTINE
LSTART UNCONDITIONAL

IFLAG THIS WILL CLEAR HIGH BIT FOR EDITOR
POINT TG THE ":" CHAR
AND TO THE FOLLOWING CHARACTER

STATEMENT

$3F IS IT "?" FOR ENTER NAME?
XA BRANCH IF NOT
TURN HIGH ORDER BIT ON TO INDICATE
IFLAG PROCESSING NAME COMMAND
TAKEIN NOW USE THE ACCEPT LOGIC

ACCEPT STATEMENT

*
XA CMPIM

TAKEIN LDAIM
JSR

LDXIM
ACHR JSR
CMPIM
BNE
INX
BNE
ACHR1 CMPIM
BNE
LDAIM
ACHR2 STAX
BIT

41 SEE IF HAVE ACCEPT STATEMENT

XC BRANCH IF NOT

CURAD SAVE ADDRESS OF THE "A" STATEMENT
LST NOTE: WILL INCLUDE CONDITIONALS
CURAD +01

LST +01

$3F DISPLAY "?" PROMPTING CHARACTER
QUTCHR

$27 CHRS GETS STORED BACKWARDS
INCHR GET AN INPUT CHARACTER
308 IS IT A BACKSPACE?
ACHR1 BRANCH IF NOT

ELSE FORGET ABOUT LAST CHARACTER IN
ACHR UNCONDITIONAL
CR WAS IT A CARRIAGE RETURN?
ACHRZ NO - SKIP AHEAD
$00 YES - CONVERT CR TO END OF LINE
CHRS AND SAVE IT FOR MATCH STATEMENT
IFLAG SEE IF GETTING NAME FIELD

MICRO — The 6502 Journal

long. If Y is minus after it has been in-
cremented, more than 128 characters
have gone by since the start of the line.

The editor inserts an end of line at this
point and continues on. If this occurs
during line print or scan for end of line, it
probably means that the PILOT program
has gone off the end, so these routines
branch to SETBGN to start at the beginn-
ing again. This does not prevent the
PILOT program from looping while look-
ing for an undefined label, but it does
prevent printing some garbage.

The first character on a line is not
necessarily useful for executing a PILOT
statement. There might be a line feed or
some other control character present
there. The asterisk and the label are not
used except as a destination for a USE
or JUMP statement. If we do find one of
these, we not only need to skip it, but we
must also skip the next character, since
that is the label. The routine SKPJNK
takes care of skipping over everything
but the asterisk, since the same routine
is used by both normal command start
and by the label search routine.

Once the program has searched out
the first probable command character
on the line, the next thing it has to do is
look for a conditional flag. This will
determine whether it must examine the
rest of the line. A “Y" or an “N” is a con-
ditional, and if the character of one of
these lines, it is checked against the cur-
rent value in FLG. If they do match, the
program simply increments Y to point to
the following character, and also starts
again, but this time Y is pointing to the
operation code following the condi-
tional.

Most of the other operations execute
in a similar manner. They look at the cur-
rent character in A, do their processing if
it is their turn, or branch to the next
routine if it isn't theirs. There are some
exceptions to this (naturally). The TEXT
command is last because, if the
character isn’t a valid statement, the
whole line must be printed anyway. One
of the other exceptions is the processing
for ENTER NAME (?:) and ACCEPT state-
ments, which share much of the same
code. Another is the code for JUMP and
USER statements, which also share
common code.

Logically, the only difference between
the “?:"” statement and the “A:” state-
ment is that the “?:” inputs characters
into both CHRS and into NAME, while
the “A:” saves the starting address of
the line for use in “J:A” (jump to last ac-
cept) processing. In fact, the processing
of the ENTER NAME statement merely
involves setting the high order bit of
IFLAG on and skipping the save of the
line address that the ACCEPT statement
performs. The high order bit of IFLAG is
normally turned off by storing the ASCIi
command character in it. The code for
the ACCEPT statement checks the high

16:43

order bit of IFLAG and stores the input
character in NAME if the bit is on.

One thing to note is that data saved in
NAME and CHRS are stored backwards,
with the first input character in
CHRS + 39,the second in CHRS + 38, etc.
Since | have to initialize the X register
anyway, | could initialize it with zero and
count up, or with 39 and count down. If |
am counting up, though, | need to do a
compare to see if | have reached the
maximum value. If | am counting down,
the minus flag will automatically set
when | reach the end.

The COMPUTE statement uses
decimal arithmetic. Each variable is two
bytes iong, with the high order first. The
high order decimal digit (bits 0-3 of the
first byte) are used to indicate the sign.
A value of 8 or 9 indicates a negative
number, while anything else is con-
sidered positive. It works out to be tens’
complement arithmetic. To illustrate,
assume | want to calculate 1 minus 2,
which everybody knows is —1. The ac-
tual result from the decimal subtract is
$9999, much as it would be $FFFF in
binary.

In order to display'this as — 1, we have
to subtract $9999 from zero to get $0001.
Using decimal arithmetic does have
some disadvantages, particularly the
fact that the range of numbers is - 2000
to + 7999 ($8000 to $7999) for two bytes
instead of — 32768 to + 32767 for binary.
Another disadvantage is that INC is not
a decimal instruction.

The primary advantage of using
decimal mode is the ease of translating
from ASCIl to internal and back. The
ASCIi characters zero through nine are
$30 through $39 in hex. Multiplying by 10
in order to accept the next digit into a
number is also very easy, since it only re-
quires a four bit shift left. Converting to
display merely means shifting each digit
to the low order four bits. ANDing off the
high order part, and ORing in $30.

The MATCH statement is the most
complicated staterment apart from COM-
PUTE. In theory, all that has to be done
is compare the characters in CHRS
against those in the MATCH statement
line, and then set FLG to Y if they match,
and to N if they don't. This works fine if
they match. The problems come when
they are different. Before the flag gets
set to N, we have to determine why they
did not match.

For one thing, it might be the end of
the MATCH statement line. Since all the
characters up to that point have match-
ed, the program treats this condition as
a complete match. PILOT uses the com-
ma as a seperator in the match state-
ment to indicate alternate possibie mat-
ches, so if the mismatch character is a
comma, it is treated as the end of line,
and FLG is setto Y.

16:44

02B2
0284
0286
02B8
02BA
0288
02BD
02C0

62cC3
02C5
g2C7
02CA
02¢p
02CF
02D
0203
02D5
02D6
02D8

02DA
02D8
020D
02DF
02E1
02E3
02E5

02E7
02E9
02EA
02EB
02EC
02ED
Q2EF
02F1
02F3
02Fu
02fF%
C2F7

02F9
02FC

02FF
0300
0301
0303
0305
0307
0308
0304
030C
030E
0310
2312
0314

0317
0318
0314
031C
031E
0320
0322

0324
0325
0327
0328
0324

032C
032E
G330
0332

MICRO — The 6502 Journal

10
95
Cc9
3]

4

20
uc

c9
FO
ic
20
36
A9
85
85
c8

Do

F8
AA
A5
CS
Fo
18
A5
65
85
A5
65
8s
uc

38
AS
ES
85
A5
E5
85

D8
56
8A
FO
3¢

A9
85
85
Fo

43

56
94
8D
o]
8B
8C

2B
LS

ol
8a
89

F8
E1

9C
DA

8F
2D
10

3A

8C
85
88
8B
24

8rF

0A
08

00
89
8A
A6

83
02

03
o4

o4

BPL
STAX
CMPIM
BEQ
DEX
BPL
JSR
JMP

ACHR?

ADCNE

*

AZIR3 BRANCH IF NOT

NAME ELSE SAVE IN NAME FIELD ALSO

$m IS IT DONE YET?

AJONE BRANCH TF HE HAS SIGNALLED END
ELSE BUMP FOR NEXT INPUT

ACHR AND GO GET IT IF ROOM STILL LEFT
CU.F DO CR/LF TO LET GUY KNOW
£in

* COMPUTE STAT MENT

xC CMPIM $13 IS IT A "C" FOR COMPUTE?
BEQ X!l BRANCH IF IT IS
JMP Xt ELSE LONG JUMP TO TEST FOR M
XC1 JSR G:!'IDX GET INDEX POINTER TO RESULT
STX AISX SAVE IT FOR NOW
LDATM $)0) CLEAR RESULT
STA RISULT
STA RISULT +01
INY POINT TO "="
LDXIM $:) SET IST OPERATION TO "+" FOR ADD
BNE O'WRAP GO SAVE & SET UP WORK AREA
1]
* LOOP FOR EAC| NEW CHARACTER IN COMPUTE PROCESSING
1]
CMPLOP INY BUMP TO NEXT CHARACTER
LDATY CRAD GET A CHARACTER
BMI T;OPR MINUS IS DELETE/ALSO LAST “OPERATOR"
CMPIM $:' IS IT "/* FOR AN OPERATION SPECIFIED?
BCC Ti0PR BRANCH IF YES
CMPIM $ 4. IF NOT - IS IT ":* FOR A NUMBER?
BCS N "NMB BRANCH IF NOT - MUST BE A VARIABLE
ANDIM $F CONVERT NUMBER TO BINARY
RORA SPIN TO HIGH ORDER P4RT OF A
RORA
RORA
RORA LEAVE BIT 3 IN CARRY
LDXIM $ ¢! 4 BITS TO ROLL INTO WORK
BITROL ROL W EK +01 RIPPLE CARRY INTO WCRK
ROL WK FOR 16 BITS
ASLA PUT NEXT BIT INTO CARRY
DEX COUNT ONE JUST DONE
BNE B TROL CONTINUE IF MORE TO GO
BEQ C fLOP ELSE GET NEXT CHARACTER (DIGITS)
NOTNMB JSR V' 'EANS TRANSFER VARIABLE 7O WORK AREA
JMP C'ELOP GO GET NEXT CHARACTER (OPERATION?)

® GOT AN OPERA 10N - FIRST PERFORM PREVIOUS REQUEST
]

ISOPR SED

OPMNUS

OPWRAP CLD

BMI

LDAIM
STA
STA
BEQ

SET TO DECIMAL MODE
SAVE NEW OPERATION IN X FCR NOwW
O FATN GET PREVIOUS OPERATION
$ L WAS IT A "-" FOR SUBTRACT?
0 MNUS BRANCH IF YES
ALL OTHERS ASSUME IT IS ADD
WRK +01
RI SULT +01
RESULT +01
W RK
RI SULT
RI SULT
Ol WRAP GO WRAP UP THE OPERATION

SUBTRACTION
RESULT +01
Wl RK +01
RI SULT +01
RIESULT
W(RK
R SULT

GET OQUT OF DECIMAL MODE
Ol RATN SAVE NEW QPERATION

DO TRANSFER TO CHECK FOR "QQn/nFF®
C! PDON DONE IF IT WAS ZERO (EOL)
C! PDON OR DELETE CHARACTERS (FROM FILLING)

£ 18] ELSE CLEAR WORK AREA FOR NEXT ONE
W(RK
WCRK +01

C} FLOP AND GO DO NEXT CHARACTER

September, 1979

0334
0336

0338

0334
033D
0340
9342
0344
0346
0347
0349
034B
034D
03UF
3351
0353

0356
0358
0354
035B
035¢C
035E
0360
0362
0364
0366
0367
0368
3364
036C
036E
0370
0372
0374

0376
0377
0379
0378
037D
037F
0381
0383

0385
0386
0388
038B
038D
038F

0391
0394
0396
0398
0394
0398
039¢C

0398
0340
03A1

0343
0345
03A7

0349
03AB
034D
03AF
Q03B0
03B3
03B5
0387
03B9
03BB

September, 1979

c9
DO
88
c8
A2
B1
FO
D5
DC
c8
Ca
10
A2
DO
c9
FO
c9
FO

c8
B1
FO
c9
FO
DO
Al
hle]

ot}
86
20
A6
84
AO

B9
FO
b5
DO
Ca
88
10

AL 8

Do

A2
86
DO

c9
DO
B1
48
20
AS
85
AS
85
68

8D
13

9F
AB
ou
90
26

F9
08
8c
54
8B
53
79

4D
Ly

97
08
03
08

F4

37
24
13
2C
Fl

97
28
2C
DC
F5
88
F1

8D
48
8D
38
ou

30
08
03
E7

F3

BB

4E
02
AA

55
11
97

54
97
95
98
96

o4
o4

21’

Q0

Qb

CMPDON LDX
BPL

LDXIM
JSR
JSR

LDXIM

TALOOP LDAX

TOVRIB LDA

XFWD
¥

ANSX
TOVRIB

$38

VTRANS
CNVDSP
304
NUMDSP
CHRS

TALOOP
XFWD
RESULT
VARIBS
RESULT
VARIBS
FWD

GET TINDEX TO RESULT
PLUS IS NORMAL INDEX TO A VARIABLE

ELSE FUDGE INDEX FOR "FROM®™ RESULT
USING "RESULT - VARIBS"

+03 MOVE RESULT TC WORK AREA

+03 CONVERT IT TO DISPLAY FORM

TRANSFER DISPLAY TO ANSWER AREA

+23 NOTE OFFSET TO PUT IT AT THE END

UNCONDITIONAL
+01 DESIRED VARIABLE
+01

ANC GO DO NEXT ONE

* PROCESS MATCH STATEMENT

XM CMPIM
BNE
DEY
INY
LDXIM
LDAIY
BEQ
CMPX
BNE
INY
DEX
BPL
UDXIM
BNE
MXNMCH CMPIM
BEQ
CMPIM
BEQ

MCHKX

MCHK

MXY

MCOMMA INY
LDATY
BEQ
CMPIM
BEQ
BNE
LDY
BNE

MCOMX

MXNOLP LDAY

MXDIFF LDY
INY
BNE

MXSETN LDXIM
MX STX

BNE
)

$4D
Xu

$27
CURAD
MXY
CHRS
MXNMCH

MCHK
$59
MX
$24
MNUMB
$2¢
MXY

CURAD
MXSETN
$2C
MCHKX
MCOMMA
HOLDY
MCOMMA

ANSX
CNVDSP
ANSX
HOLDY
$04

NUMDSP
MXDIFF
CHRS
MCOMX
MANOLP
HOLDY
MCHK
$UE

FLG
XFWD

IS TIT "M" FOR MATCH?

BRANCH IF NOT

BACK UP CONE FOR WHAT FOLLOWS

POINT TO MATCH CHARACTER

START AT FIRST ACCEPTED CHARACTER

GET THE MATCH CHARACTER

THEY HAVE MATCHED TQ END OF "M:" STMT
CHECK FOR MATCH

BRANCH IF MATCH FAILED

ELSE BUMP TQ NEXT PAIR OF CHARACTERS

AND GO CHECK IF STILL DATA LEFT

BOTH EQUAL - SET FLAG TO "y"
UNCONDITTONAL

IS IT m$" FOR VARIABLE REQUEST?

YES - MATCH TO NUMERIC VARIABLE

IS IT A COMMA GROUP SEPARATOR?

YES - MATCHED SO FAR - SET IT AS YES

NO - SO NEED TO SKIP AHEAD TO COMMA

IF TO EQL, THERE 1S NO MORE TQ CHECK
CHECK FOR A COMMA CHARACTER

RESTART COMPARE AT NEXT MATCH CHARACTER
LOOP IN SEARCH OF A COMMA

RESET Y TO CURRENT LINE POINTER

AND GO LQOK FQR NEXT COMMA

VARIABLE - BUMP TO VARIABLE ID
SAVE CURRENT X FOR NOW

CONVERT VARIABLE TO DISPLAY FORM
GET POINTER TQ INPUT BACK

SAVE CURRENT "Y" POINTER

HAVE TO SEARCH UP TQ 5 BYTES

GET ONE NUMERIC CHARACTER
BRANCH IF END - MIGHT BE MATCH
ELSE CHECK AGAINST INPUT
BRANCH IF NO MATCH

ELSE CONTINUE MATCHING

UNCONDITIONAL

RESET Y TO CURRENT LINE POINTER
BUMP TO CHARACTER AFTER VARIABLE
UNCONDITIONAL CONTINUE CHECKING

GET "N™ - MATCH WAS UNSUCCESSFUL
STORE IT
UNCONDITIONAL FOWRARD TO NEXT LINE

* PROCESS USE SUBROUTINE STATEMENT
)

XU CMPIM
BNE
LDAILY
PHA
JSR
LDA
STA
LDA
STA
PLA

$55
XJ
CURAD

FWD1
CURAD

IS IT A "U™ FOR USE SUBRQUTINE?
BRANCH IF NOT

GET DESTINATION

SAVE THE LABEL CHARACTER

MOVE TQ START QF NEXT LINE

RETURN SAVE FOR RETURN ADDRESS

CURAD

+01

RETURN +01

GET DESTINATION BACK

MICRO — The 6502 Journai

There is also the possibility it might
be caused by a request to match against
the current value of a variable. To per-
form variable matching, the program
calls CNVDSP which converts the vari-
able to display format with leading zeros
suppressed. It then matches the display
format against the characters in CHRS.
if the variable value matches, the pro-
gram continues checking the rest of the
MATCH statement.

If, even after all this, we still have a no-
match condition, all is not lost yet. We
have to scan forward in the MATCH
statement, to look for a comma or the
end of line. If we find the end of line,
then FLG gets set to N. If we find a com-
ma, the program starts the whole match
process over again, from the character
after the comma in the MATCH state-
ment and from the beginning of CHRS.
All this sounds confusing but, for exam-
ple, the statement “M:YE,OK,SUR" will
provide a Y indication for most affirma-
tive responses such as YES or YES SIR
or YEP or SURE WILL or OK.

As | mentioned earlier, the USE sub-
routine statement shares much of its
code with the JUMP statement. The
main difference is that the USE state-
ment must save the address of the start
of the next statement, while the JUMP
statement doesn't need to. Note that the

USE statement does not nest levels
(sorry about that).
There are two reserved labels in

PILOT. The first is the asterisk, which is
used to completely restart the PILOT
program (including zeroing the vari-
ables). The second reserved label is “A".
This label indicates a JUMP (or USE) to
the last ACCEPT statement. If the label
in the statement is not one of the reserv-
ed labels, the program sets CURAD back
to the start of the PILOT program via a
call to SETBGN + 3 and starts the search
for that label.

The STOP statement is trivial. It mere-
ly requires a jump back to the start of the
editor.

Processing of the EXIT from sub-
routine statement is slightly more com-
plex. It involves a check of the high order
byte of the address contained in RE-
TURN. If it is zero, then there was no
USE statement executed to get there,
and the program merely advances to the
next line. The high order byte can never
be zero, since all the lines are stored
above $500. After restoring the return ad-
dress to CURAD, the program resets the
high order byte to zero. This means that
the PILOT program can either “fall
through” a subroutine, or use it in a nor-
mal fashion.

The REMARKS processing rivals that
of the STOP statement for complexity. It
merely involves advancing to the next

16:45

statement. One final PILOT statement is
the TYPE statement. It is also the de-
fault statement if none of the above sec-
tions processed it. |f the statement is
not a true TYPE statement, Y is backed
up twice, so the whole line will be
printed. Otherwise, the line is printed
following the “T.”.

The remainder of the program con-
sists of subroutines used by various
PILOT statements. The routine PRT
prints the current fine to the end. It uses
the high order bit of IFLAG to see if the
program is in editor mode. If it is, then all
characters are printed, instead of being
checked for a ““$” to indicate a variable.
After the line has been printed, a car-
riage return and line feed are output. it
then falis through to FWD1.

The purpose of this routine is to ad-
vance to the end of the current line, and
set up CURAD for the next line. Since it
checks for end of line first, before incre-
menting Y, the fall through from PRT will
immediately exit this routine, thus sav-
ing a branch in PRT.

FWD1, in turn, exits to a routine called
SCURAD. This adds one to Y, and adds
the result to CURAD as the start of the
next line. Finally, this routine falls
through to SKPJNK, which skips over
any unwanted junk at the start of the line
and executes the return.

With the exception of CNVDSP, the re-
maining routines are short and pretty
much to the point. The VTRANS routine
must transfer the high order byte of the
variable last, so it sets the sign flag for
CNVDSP. The format of the NUMDSP ar-
ray is set up in the same “backward”
manner used for CHRS and NAME, and
it is the output of CNVDSP. If the vari-
able is negative, a ** - is inserted as the
first character.

The high order bit of SIGNIF is used to
keep track of whether a non-zero digit
has been encountered in the number be-
ing converted. If the bit is off and the
current digit is zero, the index is not
decremented, but the zero is stored
anyway. If the bit is on, the digit gets
stored regardless of its value. Any non-
zero digit turns on the high order bit, just
to make sure. An end of line zero is in-
serted after the last digit.

There are three SYM monitor routines
used in this program. If you plan to bring
Tiny PILOT up on another system you
will have to change the addresses for
these routines. They are all fairly stan-
dard, so most systems should have
equivalents. INCHR gets one ASCII
character from the terminal into the A
register, without parity; OUTCHR out-
puts one ASCII character from A; and
CRLF outputs a carriage return then a
line feed. Tiny PILOT assumes that all

registers are preserved by these
routines. vl
16:46

03BC

03BE
03cCo
g93c2

03CH
03cC6
03cC8
03Ca
03CC

Q3CE
03D0
03D2
03D4
J3D6

03D8

03DB
030D
03DF
03E1
03E2
03EY
03E6
03E8
03EB
03ED

03F0
03F2
03FY4

03F7
03F9
03FB
03FD
O3FF

0401
s403
ouo0s
407
o4g9

oucB
040D
QuoF

oui2
o414
o416
c417
o418
0418
QU1E

o421
oug3
0425
ou2r

ou29
cu2B
042D
Q42E
0430
0432

Do

c9
Do
81

85
c9
Fo
[0}
Do

A5
85
AS
85
Do

B1
c9
Do
c8
B1
Cs
Fo
20

4¢

c9
Do
4c

c9
Do
A5
FO
85

AS
85
A9
35
]

o}
DO
4c

c9
FO
88
88
20
20
uc

B1
FO
24
30

c9
DO
c8
B1
C9
FO

00
97
01
98
43

97
a7

97
87
33
S5A
EE
55

53
03
00

4s
10
96
10
98

95
97
00
96
10

52
03
79

54
02

21
6E
63

97
32
87
26

24
22

97
3F
oF

04

o4

o4

02

BNE JIo

E 4

NO GO HANDLE AS JUMP STATEMENT

* PROCESS JUMP STATEMENT

E 4

% CMPIM $LA IS IT "J" FOR JUMP STATEMENT?
BNE XS BRANCH IF NOT
LDAIY CURAD GET DESTINATION
JDO STA IFLAG SAVE LABEL CHARACTER
CMPIM $2A HAVE "#® TO REQUEST RETURN TO BEGINNING?
BEQ IREST BRANCH IF SO
CMPIM $41 SEE IF A LABELLED JUMP
BNE JIF IF NOT "A", IT'S & NORMAL JUMP
LDA LST ELSE SET TO START OF LAST ACCEPT
STA CURAD
LDA LST +01
STA CURAD +01
BNE ILNEXT UNCONDITIONAL
JF JSR SETBGN +03 AND GET BACK TO START OF PROGRAM
FNDMRK LDAIY CJRAD GET FIRST CHARACTER
CMPIM $2A IS IT "#m FOR A MARKER?
BNE FWNEXT NOPE - GO AHEAD TO NEXT LINZ
INY ELSE BUMP TO MARKER CHARACTER
LDAIY CJRAD GET LABEL
CMP I7LAG SEE IF ITS THE ONE WE WANT
BEQ L.NEXT YES - GO EXECUTE IT
FMNEXT JSR F¥D1 ELSE GO TO NEXT LINE
BCS FVDMRK AND CONTINUE LOOKING
IREST JMP RISTRT INDIRECT TO RESTRT
+*
* STOP STATEMENT
]
1S CMPIM $53 IS IT AN "S" FOR STOP STATEMENT?
BNE XE BRANCH IF NOT
JMP SIART ELSE RETURN TO EDITOR START
»
* EXIT FROM SUBROUTINE
L]
XE CMPIM $45 IS IT AN "E"
BNE X8 BRANCH IF NOT
LDA RETURN +01 MOVE RETURN ADDRESS TO CURAD
BEQ XXFWD S5KIP LINE IF NOT SET
STA CURAD +01
LDA RETURN
STA CURAD
LDAIM $00 NOW SET TO NOT-USED AGAIN
STA RETURN +01
BEQ ILNEXT UNCONDITIONAL
]
* REMARK STATEMENT
]
R CMPIM $52 IS IT AN *R"
BNE JT BRANCH TF NOT - ELSZ SKIP THE LINE
LXFWD JMP FWD CAN'T REACH THAT FAR ALONE
]
* TYPE STATEMENTS AND SYNTAX ERRORS
]
T CMPIM $54 1S IT A VALID "T" STATEMENT
BEQ TE BRANCH IF SO
DEY ELSE BACK UP TO ORIGINAL START
DEY
TE JSR PRT NOW PRINT THE LINE
ILNEXT JSR SKPJNK CURAD IS SET - SKIP OVER LEADING JUNK
JMP LSTART AND GO START ON THE LINE
#
* PRINT A LINE FROM CURRENT LOCATION TO
* NEXT EOL AND THEN SET UP FOR NEXT LINE
]
PRT LDAIY CURAD GET THE CURRENT CHARACTER
BEQ LINEND BRANCH IF TO END OF LINE
BIT “FLAG SEE IF IN EDITOR
BMI CHROUT IF SO, DON'T LOOK FOR "$"
CMPIM 324 IS IT A SPECIAL ONE ("$")
BNE CHROUT BRANCH TF NOT
INY ZLSE BUMP TO NEXT ONE
LDAIY CURAD GET VARIABLE
CMPIM }3F IS IT REQUEST FOR NAME ("$")?
BEQ NAMEG BRANCH IF YES

MICRO — The 8502 Journal

September, 1979

Q434
ou3T

Q439
c43B
Q43D
o440
ouss

3443
ouus
ouuT
oLug
ouuC
Q4D

obuF
obs52
0453
0455
0457

0454
o4sC
QU4SE
Q45F
461

0463
0464
o465
o466
ou68
0464
Q46C

QU6E
0470
0471
0473
ouTs
0477
0473
0478
047D
Q4TF
0481
o482

ou83
0486
o488
0484
048C
QUBE
0490
0492

o494
0496
0497
0499
0494
0498

o49C
JUgF
0441
04A3
445
olAT

B1
FO

10
30

[of}

18
65
85
90

A0
c8
24
30
B1

cs
Fo
c9
90
38

20
AQ
84
84
Ag
85
85
Do

B1
38
ES
04
AA
60

20

85
BS
85
60

A8
ou

90
15
47
F6
27
28
09
47
F6
47
cC

4p

97
05

F9
20

97
97
02
38

97

43

94

84
53
89

04

84

34

8a

83

ou

VBDISP

NAMEQ

CHROUT

LINEND
1]

* ENTER HERE TO SKIP A LINE WITHOUT PRINT
® AND INITIALIZE FOR THE NEXT LINE
]

FWD1

®* HERE FIXES UP CURAD TO PQINT TC BEGINNING OF A LINE
* CURAD SHOULD INDEX END OF LINE (WITH Y) ON ENTRY

1]
SCURAD

* HERE
1]

SKPJNK
SJLoop

SJRTS

* SET UP

]
SETBGN

* COMPUTE INDEX FOR
]

GETIDX LDAIY CURAD

* TRANSFER A VARIABLE'S DATA TO WORK AREA
1]

VYTRANS

September, 1979

JSR
LDXIM

LDAX
BEQ
JSR
DEX
BPL

LDXIM
LDAX
BEQ
JSR
DEX
BPL

LDAIY CURAD GET A CHARACTER

BEQ
INY
BPL
BMI

INY

INC

TO SKIP PAST

LDYIM
INY
BIT
BMI
LDAIY
BMI
CMPIM
BEQ
CMPIM
BCC
SEC
RTS

JSR
LDYIM
STY
STY
LDAIM
STA
STA
BNE

SEC
SBCIM
ASLA
TAX
RTS

JSR
LDAX
STA
LDAX
TA
RTS

BEGINNING ADDRESS OF USER AREA

CNVDSP
$04

CONVERT VARIABLE TO DISPLAY
GOT S BYTES PCSSIBLE

GET A CHARACTER

+03 BRANCH IF TO END OF VARIABLE
ELSE OUTPUT 1T
AND COUNT IT
UNCONDITIONAL

NUMDSP
CHROUT
OUTCHR

VBDISP LOOP

$27 REMEMBER - IT CAME IN BACKWARDS
NAME

CHROUT
OUTCHR

+03 BRANCH IF TO END OF NAME

NAMEO +02 UNCONDITIONAL

OUTCHR
PRT

SETBGN
CRLF

LOOP IF NOT TOO MANY
RESET TO BEGINNING IF PAST THE END
OUTPUT 4 CR AND THE LINE FEED

SCURAD BRANCH IF END OF LINE
ELSE BUMP TO NEXT ONE

FWD1 LOOP IF NOT TOO MANY

SETBGN RESET TO BEGINNING IF PAST THE END

BUMP PAST THE CR

MOVE COUNT TO A

CLEAR CARRY FOR ADD

ADD TO LOW ORDER FIRST
AND SAVE RE3SULT

SKIP IF NO CARRY FCRWARD
+01 ELSE BUMP HIGH ORDER

CURAD
CURAD
SKPJNK
CURAD
LEADING JUNK ON A LINE
$FF SET UP Y THIS WAY

INCREMENT TO NEXT CHARACTER

SEE IF IN EDIT MODE

DON'T TRY SKIPPING JUNK IF SO

GET CHARACTER TO LOOK AT

IGNORE DELETE CHARACTER ALSO

LOOK FOR "#" LABEL MARKER

RETURN IF FQUND

LOOK FOR POSSIBLE OQPERATION CHARACTER
CCNTINUE SKIPPING IF TQO LOW

SET CARRY FOR BRANCHES AFTER RETURN
BEFORE RETURN

TIFLAG
SJRTS
CURAD
SJLOQP
$24
SJRTS
$3F
SJLOOP

CRLF START ON A NEW LINE

$00 EVEN PAGE BOUNDARY

CURAD

LT ALSO SET UP THIS GUY AS DEFAULT
$05

CURAD +01

LST +01

SKPJNK UNCONDITIONAL

A VARIABLE
GET VARIABLE LETTER

$41 SUBTRACT "A" TO MAKE RELATIVE TO ZERC

TIMES TWO BYTES PER VARIABLE
MOVE TO INDEX REGTSTER
AND RETURN

GETIDX GET INDEX POINTER FIRST
VARIBS +01 NOW MOVE TO WORK AREA
WORK #0171

VARIBS

WORK

\

‘MICRO — The 6502 Journal

by Commodore

The Original 6502 System

KUIVIENT

20 mA Current Loop TTY Interface

Audio Cassette Interface
15 User IO lines

2 Interval Timers
1K+ RAM

2K KIM Monitor ROM

Hex KeypadiLED Display

KIM-1: 518000

ENCIEURERPINESY
The Ultimate Enclosure
for the KIM-1

Protects Your KIM-1

Neat, Attractive, Professional

Full Access to the Expansion and
Application Connectors

Enhances the LED Display with a Red Lense

Room for the KIM-1 and One
Additionat Board such as
MEMORY PLUS or VIDEO PLUS.

ENCLOSURE PLUS
for KIM: $3000

Al 33

20 Column Thermal Printer

by Rockwell International

The Complete 6502 Systern

High Speed Audio Cassette
20 Character LED Display

Up to 4K RAM on board

Full size
“Typewriter style
Keyboard

AlM §5: $37500 1K RAM - 342000 4K RAM

AN PLYS”
ENCLOSURE

WITH BUILTIN
POWER SUPPLY

SPECIFICATIONS:
INPUT: 110/220 YAC 50/60 Hz
QUTPUT: +5V @ 5A
+24V @ 1A

GROUNDED THREE-WIRE LINE CORD
ON/OFF SWITCH WITH PILOT LIGHT
Enclosure has room for the AIM and one
additional board: MEMORY PLUS or VIDEO PLUS

AIM PLUS: $10000 AIM and AIM PLUS: $47500
e’

617/256-3649

COMPUTERIST
PO Box 3 otz

S Chelmsford, MA
16:47

MACRO ASSEMBLER and TEXT EDITOR:
for PET, APPLE II, SYM, KIM, other. »
Macros, conditional assembly, 27 * CONVERT A VARIATLE TO DISPLAY FORM
commands, 22 pseudo-ops. Cassette *
and manual for $49.95 ($1.00 for 04A8 20 9C 04 CNVDSP JSR VTRAMNS MOVE TO WORK AREA
info). C.W. Moser 0BAB 10 17 BPL ISPLUS BRANCH IF POSATIVE
3239 Linda Drive g::? gg glz ;gﬁm :S)me %ﬁE PUT IN MINUS SIGN
NUMDS,
Winston-Salem, NC 27106 04B1 F8 SED SET DECIMAL MODE INDICATOR
04B2 38 SEC
2IPTAPE loads 8K BASIC in 15 sec- 04B3 A9 00 LDAIM 300 SUBTRACT FROM ZERO TO COMPLEMENT
onds! Slower than a speeding disk? OUB5 ES 84 SBC WORK +01
Sure, but it only costs $22.50 04BT 85 34 STA WORK 401
plus $1.00 S&H. $3.00 extra for 04B9 49 00 LDAIM $00
software on KIM cassette. Des- Q4BB E5 89 SBC WORK
cribed in MICRO #6. SASE for info. O4BD 85 89 STA WORK
Order from: Lew Edwards J4BF D8 CLD CLEAR DECIMAL MODE
1451 Hamilton Ave. 04CO A2 03 LDXIM $03 ONLY 4 POSITIONS LEFT
Trenton, NJ 08629 04C2 DO 02 BNE ISPL° SKIP INDEX SET
GRAFAX, the full screen graphics o4Cch A2 04 ISPLUS LDXIM $0U4 PLUS HAS FIVE POSITIONS AVAILABLE
o4cé 18 1SPL] CLC TURN OFF SIGNIFICANCE INDICATOR
editor for the 0SI 2P, 540 video J4CT 66 8E #OR SIGN'F
grephics ROM, polled keyboard. lcy AS 89 LDA WORK GET FIRST DIGIT
Single keystroke commands make Q4CB 20 E6 04 JSR TOOUT PUT TO OUTPUT AREA
drawing & breeze. $10 + $1.00 post~ OUCE A5 84 LDA WORK +071 SECOND DIGIT IS HIGH ORDER OF THIS
age for BASIC/assembler cassette oupc Ua LSRA MOVE TO LOW ORDER
and documentation: ouD1 4a LSRA
Mark Bass | 04D2 UA LSRA
269 Jamison Drive © 04D3 4A " LSRA
Frankfort, 1L 60423 . 04DY 20 E6 OU JSR TOOUY
04DT AS 84 LDA WORK +01 LOW ORDER IS THIRD DIGIT
. 04D9 20 Z6 04 JSR TOOU
i??ﬁ;i gggofﬁué?%?;ﬁgn 04DC 24 8E BIT SIGNIF SEE IF HAD ANY SIGNIFICANT CHARS
| OUDE 30 01 BMI ISPL: SKIP NEXT IF YES
+ GIANT LETTER QUEC CA DEX ELSE KEEP THE LAST ZERO THERE
+ HI-RES ALPHANUMERICS(B gug1 a9 0o ISPL2 LDAIM $00 TNSERT END OF LINE MARKER
on cassette, 16K. $25 buys: | QUE3 95 90 STAX NUMDSP
MULT1-MESSAGE + | QUES 60 RTS AND RETURN
INTERLEAVED KALEIDOSCOPE + ; »
MULTI-MESSAGE w/ ABSTRACT ART| BB * CONVERT CURRENT VALUE TO ASCII AND PUT TO OUTPUT AREA
on cassette, 32K. Send check or MO & *
to: Connecticut Information Systems| Jlf OYE6 29 OF TOOUT ANDIM $0F KEEP ONLY LOW ORDER
218 Huntington Rd. - O4E8 09 30 ORAIM $30 MAKE IT ASCII
Bridgeport, CT 06608 d OUEA 95 90 STAX NUMDSP SAVE REGARDLES3
QUEC 24 8E BIT SIGNIF SEE IF SIGNIFICANCE STARTED
MAILING LIST PROGRAM for APPLE: Q4EE 30 0% BMI SETSIG YES - ALL ARE IMPORTANT NOW
Maintain complete mailing list! Q4FO C9 30 CMPIM $30 ELSE SEE IF SHOULD START NOW
Requires 1 drive and Applesoft II O4F2 DO 01 BNE SET31G IMPORTANT IF NOT ZERO
Data base can be added, changed, O4F4 60 RTS ELSE RETURN
deleted, reformatted, searched (O4Fs 38 3SETSIG SEC SET SIGNIFICANCE BIT ON
and sorted (5). Send $34.95 to: | oUF6 66 8E ROR SIGNTF ALWAYS
SOFTWARE TECHNOLOGY for COMPUTERS W ours ca DEX AND POINT TO NEXT AVAILABLE POSITION
P.0. Box 428 OUF9 60 PGMEND RTS AND THEN RETURN
Belmont, Ma. 02178
For only $33 for 12 issues you
get CURSOR, the original cassette] SYMBOL TABLE 2000 2215A
magazine for the Commodore PET. ACHR 029E ACHRQ 02A8 ACHRR Q24E ACHRS 0286
Each issue has a graphic "Front ADONE 028D ANSX 008D BITROL 02EF CHAR 023F
Cover" program, plus five excel- CHARQ 0245 CHKCOHl 026D CHROUT O4UF CHRS 0003
lent programs that are ready to CMPDON 0334 CMPLOP’ 02DA CNVDSP 04A8 CR 0DOD
g CRLF 83uD CURAD 0097 EGET 020C ELINE 0207
Load and Run. The CURSOR NCTES EXEC 0252 FLG 0002 FMNEXT 03E8 FNDMRK 03DB
newsletter with each issue pro- WD 0279 FWDQ 0ousa GETIDX 0494 HOLDY 0088
vides useful information about IFLAG 0087 ILNEX'' 041B INCHR 8A1B IREST O03ED
the programs and help you with ISOPR O02FF ISPLQ 0A4C6 ISPLR OQUE1 ISPLUS QucH
using your PET. Jno 03CH JF 03D8 LINEND 0457 LSTART 0263
CURSOR LST 0000 MCHK 03S5E MCHKX 0358 MCOMMA 0376
Box 550 MCOMX 0381 MNUMB 0385 MX 0345 MXDIFF 039E
ox MXNMCH 036E MXNOLI' 0391 MXSETN 0343 MXY 0364
Goleta, Ca. 93017 NAME 0028 NAMEO 0443 NOTNMB 02F9 NUMDSP €090
OPMNUS 0317 OPRATY 008F OPWRAP 0324 OUTCHR 8A4T
?m’txeaite;? g°ftwa’e :?gsgg'r?“‘ PADLOP 0231 PGMEND O4F9 PRT 0421 RESTRQ 025E
or Apple wners. -V for RESTRT 0255 RESULT 008B RETURN 0095 SCURAD 0463
10 issues per year. Back issues SETBGN 0u83 SETNL 024D SETSIG O4FS SIGNIF O08E
available at $1.00 each. Order SJLOOP 0470 SJRTS 0481 SKPJNK QUBE SKPNXT 0264
from: : START 0200 STRTS1 027E TAKEIN 0297 TALOQP Q342
SOUTHEASTERN SOFTWARE TE OME TFLAG 0275 TOOUT OUES TOVRIB 03u4B
TRYDSP 022 TRYREF 022D VARIBS 0053 VBDISP 0439
et wi s e o gy n oo ec
- 3 XJ 03BE
NEW ORLEANS, LA. 70126) ™ 0356 XQUES1 0282 XR Q4CB %S 03F0
XT 0412 XU 0349 XXFWD OU4OF

16:48 MICRO — The 8502 Journal September, 1979

