Additions to Tiny Pilot

““W“Wm
These additions to Tiny Pilot include code to input a
numeric variable, generate a random number, and call a
machine language subroutine. A complete sample Pilot

program is included.

N O Y et e e e e o o o e a a a d

Nicholas Vrtis’ Tiny PILOT is a
neat way to move up to a high level
language, but it does have some
drawbacks. One of the biggest pro-
blems is the lack of a method to in-
put into a variable from running pro-
gram. All values must be preset by a
C: command. This can be a real has-
sle for some applications.

Another useful addition would be
a machine language subroutine call.
It would allow you to write programs
using functions that standard Pilot
doesn’t have, like having a beeper
rather than a “?” for a prompt. Or
maybe comparing the contents of
two variables and setting a flag to
indicate which is larger.

One more function that could be
added is a random number
generator. Some games (until my
KIM takes over the world, I'll resort
to playing games on it!), such as Hl-
LO and CRAPS, can be played only
if a random value can be created. If
any of these problems bother you,
then read on!

These routines will solve all of
these problems. Before | start detail-
ing them, realize that they will take
away from memory space for the
source (in Pilot). This will be no pro-
blem if your system has extra
memory, but my 2K is filled really
fast with a long program! Don't use
a lot of remarks and long strings to
conserve space.

Let me start by describing what
modifications are needed to Tiny

August 1980

PILOT for these programs to work.
Make the following corrections:

027E 4C 16 05
0281 EA

That just tells the interpreter to
try to match the current command
with our new ones before it checks
its own. The instructions that we
just wiped out are replaced at 0516.
Correct the following:

048C A9 06

That tells the interpreter that the
Tiny PILOT source begins at page 6,
not page 5. Addresses 04FA ot 0515
are just relocated versions of the
subroutines previously described by
me (MICRO, 21:41). If your system
doesn't need them, relocate the rest
of the program to 04FA. If you will
be using them, remember to correct
all the 1/0 calls in the Pilot inter-
preter. Here are the new instruc-
tions:

I:x Input a positive number into
variable x (can be any from A to Z).
Prints a “?"" as a prompt.

P:x Puts a random number into
variable x (can be any from A to Z).
The number will be in the range 0 to
99.

L:x Calls machine language
subroutine x (can be any name from
A to Z). The starting address of the
subroutine is stored in the following
table:

MICRO -- The 6502 Journal

Bob Applegate
Box 148
Bordentown, NJ 08505

Name Zero page address

A AOQ, A1
B A2, A3
C A4, A5
Y DO, D1
z D2, D3

Here's how they work. 0516 to
0519 only replace what we
destroyed at 027E to 0281. The first
four instructions see if the next
command is an L: command. If not,
it jumps to 0531 for the next com-
mand. If it is the right one, it jumps
to the subroutine at 0494 to get the
index for the label name. Then it
uses the index to get the starting ad-
dress of the subroutine from the
table (low-order first). Then it puts
the values at the appropriate loca-
tions (052C, 052D) and makes a
jump to the subroutine. This routine
can’'t be PROMmed.

There is probably a better way to
execute that jump, but this way is
easy, and it works. Finally it jumps
back to 0279.

| can’t take credit for the random
number generator (053A to 054B). It
is a slightly modified version of the
one presented by Jim Butterfield on
page 172 of The First Book of KIM. |
suggest that you look there for the
theory behind it. Addresses 0531 to
0534 just check to see if we are ex-
ecuting the correct command. A call
is made to 0494 for the index. The X
register is stored for future use at

27:21

008D. Then the random number is
produced. The result is in the A
register. X is loaded again; then the
value of A is stored in the proper
variable. It finished by jumping to
0279

All that is left now is the |: com-
mand. If it's not an |, the program
jumps to 0591. The next five instruc-
tions output a prompt character
(“?") and clear the temporary work
area (OODA, 00DB). Then it gets the
ASCII input. If it is a CR, it jumps
ahead to 0580. Otherwise, it sub-
tracts $30 to get a decimal number.
Next, it rolls 00DA and 00DB four
places to the left, to make room for
the new digit. The value of the A
register is added to 00DA to achieve
the new number. The program jumps
back to 0564 to get the next
character.

Once a CR input, the program
goes to 0580. Then it jJumps to 0494
for the index. The contents of 00DA
and 00DB are stored at the proper
variable. Then the program outputs
a CR and LF, and finally jumps back
to 0279.

If the command didn’'t match any
of those, the program goes back to
0282, where it looks through the
standard Pilot instructions. Addi-
tional commands can be added
from 0591 and up. The A register will
already contain the command
character, so just use a CMP in-
struction to see if it is the one you
want. The Y register already points
to the character after the *:", so just
use a B1 97 to load it into the A
register. The last instruction should
be 4C 79 02. The very last instruction
after your additional routines must
be 4C 82 02.

| hope that these new commands
will increase the use of Tiny PILOT.
It is really a good language, con-
sidering its small size. | have includ-
ed some sample Tiny PILOT pro-
grams to demonstrate what it can
do.
B e e S S e e e T e Yo o o e
Bob Applegate is seventeen years
old, an 11th grade student. He has
been accepted to a local college
where he plans to major in computer
science. He has been working with
computers for about four years,
starting with BASIC, at Princeton
University.

His one-year-old KIM is about to be
upgraded to 16K, with OSI BASIC-in-
ROM.

B e e e e e o Y

8S16-
asie-
8515
BS1R/-
as1c-
BS1E-
es21-
8S23-
BS26~
as28-
8528~
B52E-
8531-
8533~
8535~
as38-
853/
B53B-
a53C-
BS3E-
8540
8542~
8544-
8546
85438-
eS4R-
854B-
e540-
BS4E-
550
552
8555

FE
BsS59-
s5B-
BSSE-
BESse-
B2~
BS54
Bev-
69~
BS6B-
pS6C-
FS6E-
BSve-
pS71-
BSV 3~
BS7?S5-
BS76-
BSV8-
85v9-
57~
857D
esse-
583~
es585-
ess7-
8585~
e58B-
8S8E-
8531-

KIF

15 B I

Bk Fi-
BAF -
B FF -
BSE L -
RS-
A
BSET
EISE T
G EIF—
S
BSEE -
G~
BS 1 -

Bol 5

AN RS ANARG SRR AL ARIBIBRASRTSIIRRALGALIREEISNBRBAREIRRE

]
=~

BRRBIBB2NBLGS

S¥8RIRT

-
0

ez

B4

nSI8F8RYESIL8

s %% R

L2288

LU

a3
ez
ez

B3

28 3
o
p
A
S
268
F<
(=15
a6
S
24
Hi
F

(=5

New Pilot Commands

STA
INY
INY

BNE
cmMC
ADC
STR
JMF
JSR
LDA
STA
LDA
STA
JSR
JMF
JMP

$0570

sDB
sDB
$0564
$8474
$DA
$53. %
$DB
$54. K
$QSeAR
$8zv9
$9282

CLEAR HIGH BIT FOR EDITOR
POINT TO “&*

AND THE MNEXT CHARACTER

IS IT THE L COMMAND

NO, GO TO @531

COMPUTE THE INDEX

GET THE HIGH-ORDER BYTE FROM TRBLE
PUT IT BEHIND THE JS5R
GET THE LOW ORDER BYTE
PUT IT BEHIND THE JSR
EXECUTE THE SUBROUTINE
ALL DONE., RETURN TO PILOT
IS IT THE P COMMARND

NOPE, GO TO @355

COMPUTE THE INDEX

STORE THE INDEX FOR HNOW
DECIMAL NUMBERS ONLY, PLEASE
CARRY ADDS UALLE 1

LAST UALUE

RDD B+CARRY

ADD C

HEW NUMBER

MOUE 5 NUMBERS

GET FIRST MUMBER

MOUVE OVER 1

NEXT NUMBER

ALL MOUVED?

EVERYTHING BACK YO NORMAL
PICK-UP THE INDEX

STORE THE MUMBER AT UARIABLE
BACK TO PILOT

SEE IF IT°S THE 1 COMMAND
GO TO 8591 IF NOT

GET A "?"

OUTPUT IT SAS A PROMPT
CLEAR THINGS OUT
ESPECIALLY THIS TEMPORARY VARIABLE
DITTO

GET INPUT

Cr?

YES, GO TO @5se

GET READY TO SUBTRACT
TURN ASCII INTO BCD

GET READY TO MULTIPLY BY 1@
CLEAR THINGS FIRST
MULTIPLY

MULTIPLY

RGAINTY

YES. THEN @5ve

CLEAR THINGS UFP RGAIN

ADD THE MNEW DIGIT

STORE THE ANSWER

DO IT ALL OUVER RGARIN

GET THE INDEX

GET FIRST PART OF ANSWER
STORE IT AT UARRIABLE

GET THE NEXT PART

AND STORE THAT

START A MEW LINE

ALL DONE, RETURN TO PILOT
NOT A NEW COMMAND. CHECK OLD ONES

Some Relocated Subroutines
(See MICRO 21:41)

EE
IH
EE

1E

EE
HE
EE

1E

ED
EE
2F 1E
ED
EE

ST FEE
JER *1ESA
LD FEE
RTS

Lol FEE
J5RE F1EAG
LDy FEE
FETS

R FED
5T *¥EE
JER FLIE2F
LLr FED
Lo $EE
TS

